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ABSTRACT

Forecasting land transfer duty with a regime 
switching vector error correction model

By Sebastian Paz and Jonathan Dark1

Department of Treasury and Finance

Accurately forecasting government revenue is crucial for effective budgeting and policy making. To model 
and forecast land transfer duty we use regime-switching vector error correction models. We identify two 
states: a high-growth low-volatility state and a low-growth high-volatility state. In real time, the models 
identify the high-volatility state associated with COVID-19. Our models consistently provide better forecasts 
than state invariant alternatives across multiple horizons and loss functions. Our findings suggest that regime 
switching models may be a useful tool for budgeting purposes.

1.	 Introduction

1	 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Department of Treasury and Finance (DTF).

Land transfer duty (LTD), commonly referred to as stamp 
duty, is a tax payable by property purchasers in Victoria, 
Australia. LTD rates range from 1.4 per cent to 6.5 per cent 
of the property’s purchase price, depending on its value 
(State Revenue Office Victoria, 2024). As of 2023, the 
total value of the Victorian residential housing market is 
approximately AUD $2 trillion, with a median house price 
in Melbourne of $907 000. Housing prices have seen an 
annualised growth rate of around 5 per cent in recent years 
(CoreLogic Australia, 2023).

LTD accounts for 27 per cent of the State’s total taxation 
revenue in 2023, as shown in Figure 1a. Moreover, LTD returns 
exhibit substantial volatility – almost five times greater than 
that of the ASX 200 index – with month‑to‑month changes 
ranging from -53.3 per cent to +81.5 per cent.
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Figure 1: Land transfer duty

(a) FY 2023 Victorian tax revenue	 (b) LTD return volatility
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The forecasting of land transfer duty (LTD) in Victoria is 
challenging given this volatility and the cyclicality of the 
property market. The task becomes even more complex 
when considering broader economic factors that influence 
property transactions, such as interest rates, economic 
growth, and policy changes. This paper aims to address 
these complexities by employing regime switching models, 
specifically Markov switching models. This model class has 
gained prominence in recent literature given its ability to 
capture non-linearities and structural breaks.

Accurate revenue forecasts are critical for the Victorian 
Government’s expenditure and budget planning, especially 
for significant revenue sources like LTD. The risks of forecast 
inaccuracies are amplified during economic disruptions. 
For instance, the COVID-19 pandemic severely impacted the 
Victorian property market, resulting in a 58 per cent decline 
in LTD revenue over the first six months of 2020. These factors 
underscore the potential value of models that can capture 
market shifts through regime switching.

Traditional linear models, such as vector auto-regression 
(VAR) (Sims, 1980), assume a stable relationship between 
variables over time. This may be unrealistic in a property 
market influenced by various factors which may cause 
sudden shifts in transaction volumes and prices. Markov 
switching models (Hamilton, 1989) have been used to model 
and forecast time series with distinct regimes, such as high 
and low-volatility periods. Interactions between property 
prices, sales volumes and LTD may differ during expansionary 
and contractionary periods, so we aim to capture any shifts 
and improve LTD forecasts.

Cointegration is vital for analysing multiple time series that 
exhibit long-run equilibrium relationships. The vector error 
correction model (VECM) extends the VAR to incorporate 
cointegration between non-stationary series, while also 
adjusting for short-term deviations from equilibrium. When 
combined with regime switching, VECMs have been shown 
to capture long-run relationships and shifts across states, 
providing superior forecasts in volatile markets (Lim and 
Tsiaplias, 2019, Ang and Bekaert, 2002, Krolzig, 2001) and 
across business cycles (Filardo, 1994).
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Our results support the use of the MS-VECM when modelling 
and forecasting LTD. Our models identify two states: a 
contractionary short-lived state characterised by low LTD 
growth and heightened volatility; and an expansionary 
(normal) state with stronger LTD growth and lower volatility. 
In real time, the models identify the high volatility state 
associated with the onset of COVID-19. The MS-VECM 
consistently improves LTD forecasts across multiple horizons 
and loss functions relative to benchmarks.

We proceed as follows: Section 2 summarises the relevant 
literature on non-linear models. Section 3 details the models 
and their estimation. Section 4 presents estimation results 
and out-of-sample forecast performance, including an 
analysis over the COVID-19 period. Section 5 concludes the 
paper.

2.	 Literature 
review

The goal of this paper is to combine the Markov switching 
framework with a vector error correction model (VECM). 
We therefore seek a model that can jointly capture regime 
switches and long-run equilibrium dynamics.

Standard time series models assume a stable relationship 
between variables over time. This is despite tests which often 
suggest regime switches in macroeconomic and financial 
variables (Bai and Perron, 2003). This is important because 
unmodelled breaks can lead to forecast failure (Clements 
and Hendry, 1999).

Markov switching models (Hamilton, 1989) are a popular way 
to model structural breaks.2 The regime is determined by 
an unobserved latent variable that follows a discrete time 
Markov Chain. Each regime has its own set of parameters, 
so the model is well-suited for capturing non-linear  
dynamics and regime shifts. Furthermore, the construction 
of a Markov Chain allows for the study of regime movements 
through time and the forecasting of future states.3 

Markov switching models have been used to model 
expansions and contractions in business cycles, and 
shifts between bull and bear markets (Hamilton, 1994 and 
Guidolin and Timmermann, 2005). This is important, as 
macroeconomic shocks such as the COVID-19 pandemic can 
cause structural breaks, particularly in financial and property 
markets (Trefz, 2023 and Issam et al., 2024). Shen (2014) uses 
a Markov switching vector error correction model (MS-VECM) 
to examine housing market interactions with the stock market 
and consumer spending across different regimes. During 
economic expansions, rising housing prices positively affect 
consumer spending through the ‘wealth effect’. However, in 
downturns, the housing market’s influence on consumption 
can weaken or even become negative, exacerbating 
consumer pessimism and reducing spending.

2	 Other regime switching models include threshold models with discrete or smooth transitions between regimes (Tsay, 1998 and Chan and Tong, 1985). This model 
class was also examined, however threshold switching models performed poorly.

3	 Krolzig (1997b) provides an excellent theoretical foundation for understanding and estimating Markov switching models.
4	 Recent advances in Markov switching estimation, such as Bayesian methods by Kim and Nelson (1999), have improved model robustness under uncertain 

economic conditions. Bayesian models are computationally demanding and are the subject of future research.
5	 The CoreLogic Home Value Index (HVI) tracks changes in residential property values across regions in Australia. It is derived from a hedonic regression model that 

adjusts for property characteristics to accurately reflect market trends (CoreLogic Australia, 2023).

When forecasting, Markov switching models have 
outperformed linear (state invariant) models (Ang and 
Bekaert, 2002, Filardo, 1994, and Krolzig, 2001). Markov 
switching models however do not always provide reliable 
forecasts as minor errors in predicting the regime can 
severely degrade performance, resulting in higher forecast 
errors than a random walk (Dacco and Satchell, 1999). 
Furthermore, determining the number of regimes is essential, 
but plagued by unidentified nuisance parameters under the 
null hypothesis of no structural change. This model class may 
therefore perform worse than state-invariant alternatives due 
to the large number of parameters, and the possibility of false 
break identification (Guidolin, 2009 and Guidolin et al., 2014).4 

While Markov switching models offer advantages in capturing 
non-linearities and structural breaks, their forecasting 
performance relies heavily on accurate regime identification 
and lag selection. We integrate the Markov switching 
framework with a VECM to assess whether these models 
can outperform traditional state-invariant approaches in 
forecasting LTD.

3.	 Data and 
methodology

We perform two sets of analysis to identify regime switching 
ability and forecast accuracy. The first estimates MS-VECM 
models using the entire data set. We use this analysis to gain 
insights into the ability of the models to infer regime switches 
over the entire sample. In the second part of our analysis, 
we examine the out-of-sample forecast performance of our 
model. Section 3.1 introduces the data and performs tests for 
cointegration. Section 3.2 discusses the MS-VECM model and 
its estimation. Section 3.3 then describes the model selection 
criteria and out-of-sample forecast methodology. The results 
follow in section 4.

3.1	 Data and preliminary analysis
This section describes the data, focusing on the variables 
that form the core of the forecasting models.

LTD is levied based on property value, making it a function 
of both house prices and the volume of property transfers. 
Accordingly, we define the following three-variable system:

xt = [LTDt   HVIt   VOLt]

where: LTDt represents land transfer duty at time t, HVIt 
the CoreLogic Home Value Index for Victoria, and VOLt the 
volume of property transfers in Victoria.5 Each variable 
is monthly, seasonally adjusted, and transformed into 
logarithmic form. 
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The data set spans July 1986 to June 2023, providing 444 
observations. Figure 2 presents time series plots of xt (in 
levels) and its first differences Δxt = xt– xt–1 . The plots reveal 
that volume was heavily impacted by COVID-19, with property 
sales plummeting 61 per cent in March and April 2020. This 
had significant effects on the Victorian housing market and 
may be evidence of a structural break.

6	  This can occur because the model covariance is a weighted mixture, where the weights (regime probabilities) evolve through time.

Table 1 summarises the key descriptive statistics along with 
Augmented Dickey-Fuller (ADF) and ARCH tests (Engle, 1982). 
Results show that each series is I(1) in levels but I(0) once 
differenced. ARCH tests indicate time-varying volatility in LTD 
and VOL. While ARCH/GARCH errors (Bollerslev, 1986) are not 
directly modelled here, our Markov switching models (below) 
allow for state-dependent covariance matrices, capturing 
heteroskedasticity across regimes.6 

Figure 2: Time series plots of xt and ∆xt 
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Table 1: Descriptive statistics

SERIES µ σ SKEW KURT ADF ARCH

LTDt 18.9439 0.9524 -0.1100 1.7229 0.9202 119.8286**

HV It 4.1898 0.6266 -0.0323 1.5675 11.3262 313.9819**

V OLt 8.9350 0.2665 -0.4652 2.3793 0.2596 91.1425**

∆LTDt 0.0074 0.1536 -0.5762 9.0680 -36.9412** 59.9471**

∆HV It 0.0045 0.0080 0.2775 2.7385 -3.501** 7.204

∆V OLt 0.0016 0.0887 0.4784 11.5881 -26.4065** 118.2388**

Note: All variables are in natural logs. The final two columns report the ADF and ARCH test statistics, with critical values of -1.941 and 7.815, 

respectively. Notations * and ** denote rejection of the null hypothesis at the 5 per cent and 1 per cent levels. ARCH tests are based on three lags 

of fitted AR(1) residuals.

7	 This form of Johansen test (Johansen, 1988) provides robust results, yet it has limitations. It can have low power in small samples (Cheung and Lai, 1993), though 
the long dataset (1986–2023) helps mitigate this issue. Additionally, sensitivity to lag length selection may affect the test’s outcomes, so lag selection is optimised 
using Akaike and Schwarz information criteria (AIC and SIC) to enhance robustness.

8	 The inverse roots from the VAR(4) model in levels are also within the unit circle. One root is close to but less than unity, which is supportive of cointegration, but 
also indicates that the VAR in levels will generate non-explosive forecasts.

Table 2 reports the trace test for cointegration between the xt 
variables.7 The rejection of the first null hypothesis (r = 0) and 
failure to reject the second (r ≤ 1) suggests one cointegrating 
vector. The maximum eigenvalue test provides similar results. 
This supports one, state-invariant cointegrating vector in 
the regime switching models that follow. Despite this, we also 
consider a VAR in levels because it may outperform a VECM 
when the number of cointegrating vectors or their form is 
mis-specified (Clark, 2000).8 

Table 2: Trace test

EIGENVALUE TEST STAT CRITICAL VALUE P-VALUE

r = 0 0.0532 33.8647 29.7976 0.0162

r ≤ 1 0.0195 9.8816 15.4948 0.3287

r ≤ 2 0.0028 1.2393 3.8415 0.3532

3.2	 MS-VECM and smoothed probabilities
To develop the Markov switching VECM (MS-VECM), we 
commence with the state-invariant VECM. The VECM(p) is 
represented as follows:

where Π = αβT is the error correction term split into two 3×r 
matrices: the adjustment term α and the cointegrating 
vector(s) β. The cointegrating vector contains r cointegration 

relations between the variables in xt, where r is the rank 

of Π. ν is a 3×1 vector of intercepts, Γk are p autoregressive 
parameter matrices of dimension 3×3, and ϵt is a 3×1 vector of 
innovations at time t.

Markov switching vector error correction models (MS-VECMs) 
are an extension of traditional VECM models that allow for 
state-dependent parameters. The central feature of the 
MS‑VECM is a latent, unobservable variable that governs 
which regime the model is in at any given time. This latent 
variable follows a Markov process, which dictates the 
transition probabilities between different regimes. Each 
regime is characterised by its own set of parameters, such as 
the speed of adjustment towards the long-term equilibrium, 
short-term dynamics, and error variance.
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The unobserved latent variable, St, takes on a finite number 
of values, representing each different regime. Given our 
modest sample size and the large number of parameters, our 
MS‑VECM models only allow for a maximum of two regimes. 
The transition between these regimes occurs discretely at 
every step in time (in this case, every month). The switch is 
governed by a discrete time Markov chain – a stochastic 
process which specifies the probabilities of moving from 
one regime to another. The transition matrix of a two-state 
Markov chain, denoted P, contains these probabilities where 
each element pij represents the probability of transitioning 
from regime i to j in the next period.

Markov chains are memoryless, meaning the probability 
of moving to a different state depends only on the current 
regime and not on any past states:

The two-state MS-VECM(p) with state dependent 
constant, adjustment speed to cointegrating equilibrium, 
heteroskedasticity, and short-run dynamics can be 
expressed as follows:

with state dependent parameters:

     

     

An alternative form of regime switching examined in this 
paper is the Markov switching autoregressive invariant vector 
error correction model (MSAI-VECM). This model constrains 
the short-run dynamics (autoregressive terms) to remain 
constant across regimes, unlike the full MS-VECM, where all 
parameters may vary by regime. The MSAI-VECM is therefore 
a restricted, nested version of the MS-VECM. It is primarily 
implemented to reduce the number of estimable parameters, 
thereby improving the likelihood that the EM algorithm 
converges. The MSAI-VECM is written as follows:

9	  The conditional log-likelihood function for a two regime MS-VECM is given by: 

	

	 where ξst = {νst , αst , Γst , Σst , pIJ} contains all information about the realisation of the Markov chain, and ξt, st are the conditional regime probabilities calculated by 
the recursive filtering and smoothing algorithms discussed in Krolzig (1997b). tr, vec, and ⊗ are the trace operator, vectorisation operator, and Kronecker product, 
respectively. The model is therefore a mixture of n distributions, where n = 2 is the number of states.

We estimate our models using the following two-step 
procedure:

1.	 Estimate the number of cointegrating vectors and 
their coefficients using the Johansen procedure. The 
cointegrating vector β is therefore assumed to be 
constant across regimes, implying a state-invariant 
equilibrium relationship between LTDt, HVIt, and VOLt.

2.	 Estimate the remaining parameters of the MS-VECM 
(including the regime transition matrix P) via maximum 
likelihood (MLE). We use the Expectation Maximisation 
(EM) algorithm. Bayesian methods could also be used for 
estimation as described by Kim and Nelson (1999).9 

The EM algorithm estimates both the VECM parameters and 
regime probabilities via a smoothing algorithm. Once the 
parameters of the MS-VECM are estimated, the smoothed 
probabilities of being in each regime can be generated using 
the Hamilton filter or similar smoothing algorithms. These 
probabilities represent the likelihood that the system was 
in a particular regime at each point in time, given the entire 
dataset. The smoothed probabilities, denoted as P (st = j|xt), 
take into account both past and future observations to 
provide a more accurate estimate of regime transitions. This 
paper employs the reverse recursion algorithm of Kim (1994) 
to smooth filtered state probabilities.

Testing for regime switching in the MS-VECM framework 
is complicvated by the presence of unidentified nuisance 
parameters (the elements of P) under the null hypothesis 
of no regime switching. We therefore follow Psaradakis and 
Spagnolo (2003), who estimate the linear (state-invariant) 
VECM and the MS-VECM. If the MS-VECM has a lower AIC, 
this provides evidence in support of regime switching.

3.3	Model selection via cross-validation 
and out-of-sample forecasting

When estimating the MS-VECM over the full sample (July 1986 
to June 2023), we use the SIC to determine the optimal 
number of lags. However for out-of-sample forecasting, 
information criteria may be sub-optimal (Krolzig, 1997a). We 
therefore follow Sarno et al (2004) and use cross-validation. 
We select the number of lags that minimise the forecast error 
over a training/cross-validation sample. We focus on the 
mean absolute percentage error (MAPE) for 12-month ahead 
cumulative forecast errors. However, mean squared errors 
(MSE) are also included for robustness. 
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The general h-step ahead cumulative forecast loss is:

and the h-step ahead cumulative MAPE over the forecasting 
period [τ, T] is:

The h-step ahead cumulative MSE over the forecasting period 
[τ, T] is:

The cross-validation undertakes a forecasting exercise 
through the training sample by estimating a model using 
data from time 1 to time τ, and calculating the conditional 
h-month ahead forecast xˆ τ+h. Then the window steps forward 
a sample (i.e. estimating from 2 to τ + 1) and forecasts 
xˆ(τ+1)+h. This procedure iterates until the final forecast xˆT has 
been computed. The cross-validation repeats this exercise 
for every lag specification and chooses the model which 
minimises the h-step ahead cumulative MAPE:

argminp MAPE(xt+h,τ,T)

where forecasts xˆ t+h are computed using a linear or MS 
model with lag length p.

Section 4 selects models that minimise the 12-step-ahead 
cumulative MAPE over the training sample (h = 12). These 
optimal specifications are referred to as the CV(12) models. 
For robustness, the specifications and forecast performance 
of CV(3) models, which minimise the 3-step-ahead 
cumulative MAPE (h = 3), are provided in Appendix A.

Our initial estimation employs a 25-year window from 
July 1986 to June 2011. The six years from July 2011 to 
June 2017 serve as the training sample. After selecting the 
number of lags, the model specifications are fixed. We then 
used the rest of the sample (July 2017 to June 2023) to 
assess the out‑of‑sample forecasts. Like the cross-validation 
exercise, the 25-year estimation window is rolled forward each 
period. The model is re-estimated and forecasts generated 
recursively over 1 to 12 month horizons conditional on the 
information set.

10	  The relevant t-statistics are:

	 where σˆij is the estimated standard deviation of d¯ij. The MCS uses the range test statistic:

Forecast performance is evaluated using the Model 
Confidence Set (MCS) of Hansen et al (2011). This procedure is 
based on the cumulative loss differential e(xt+h) and the MAPE 
associated with this loss:

where ei and ej are the forecast errors from the competing 
models i and j, respectively. The MCS procedure identifies 
a set of models that are statistically indistinguishable from 
the ‘best’ model at a given confidence level. The MCS test 
statistic is based on the forecast errors of each model in the 
set M under investigation. The optimal set M∗a ⊆ M includes 
the best performing models at the chosen confidence level α. 
By computing the test statistic and p-value for each model 
relative to the ‘best’ model, models are iteratively removed 
from the set if their p-value falls below α.10 If multiple models 
remain in M∗a, it indicates failure to reject the null that they 
have equal predictive ability.

4.	 Results
This section is divided into four parts: Section 4.1 studies 
the full sample estimation results for the MS-VECM. We 
then consider forecast performance. This commences 
in section 4.2 which performs the cross-validation, and is 
followed by the out‑of‑sample (OOS) forecasts in section 4.3. 
Finally, section 4.4 considers a subset of the out-of-sample 
period, focusing on the COVID-19 period and the ability of the 
model to identify regime switches in real time.

4.1	 Full sample estimation results
Here we compare estimation results from the VECM 
and MS-VECM. The linear VECM provides a useful 
baseline for comparison to the MS-VECM, which allows 
for state‑dependent intercepts, speed of adjustment, 
auto‑regressive lags and volatility. The estimated 
parameters for the two models are presented in Table 3.
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Table 3: Estimation results

VECM(3) MS-VECM(1)

∆LTDt ∆HV It ∆VOLt ∆LTDt ∆HV It ∆VOLt

Regime dependent intercepts
ν1 2.269 0.003 0.697 1.775 0.008 0.374

(4.93) (0.30) (2.13) (6.37) (1.07) (2.58)

ν2 5.270 0.063 -0.527

(10.66) (5.86) (-1.21)

Regime dependent error correction

α1(×102) -2.644 -0.003 -0.802 -2.802 -0.012 -0.587
(-4.95) (-0.26) (-2.11) (-6.38) (-1.02) (-2.57)

α2(×102) -8.331 -0.099 0.846
(-10.69) (-5.84) (1.23)

β 7.932 -11.185 -1.909 7.104 -9.368 -3.566

Regime 1 short-run dynamics
∆LTD t−1 -0.669 0.001 0.050 -0.346 0.002 -0.031

(-12.26) (0.54) (1.28) (-8.99) (1.50) (-1.56)
∆HV It−1 6.721 0.903 5.791 3.174 0.953 0.212

(3.44) (18.86) (4.17) (5.74) (63.76) (0.74)
∆V OLt−1 0.032 0.009 -0.390 0.132 0.007 -0.170

(0.48) (5.50) (-8.15) (1.72) (3.20) (-4.24)
∆LTDt−2 -0.410 0.001 0.088

(-7.25) (0.60) (2.19)
∆HV It−2 0.754 0.190 -2.246

(0.29) (3.02) (-1.23)
∆V OLt−2 0.026 0.006 -0.350

(0.36) (3.18) (-6.90)
∆LTDt−3 -0.118 0.001 0.122

(-2.57) (1.22) (3.75)
∆HV It−3 -1.010 -0.198 -4.283

(-0.52) (-4.15) (-3.10)
∆V OLt−3 0.032 0.003 -0.282

(0.47) (1.55) (-5.79)

Regime 2 short-run dynamics
∆LTDt−1 -0.366 0.004 -0.046

(-7.87) (3.83) (-1.13)
∆HV It−1 5.116 0.828 -2.062

(5.02) (37.20) (-2.30)
∆V OLt−1 -0.204 0.005 -0.232

(-3.37) (3.58) (-4.35)
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VECM(3) MS-VECM(1)

∆LTDt ∆HV It ∆VOLt ∆LTDt ∆HV It ∆VOLt

Regime 1 covariance (×102)
∆LTDt 1.255 0.001 0.070 0.822 0.003 0.068
∆HV It 0.001 0.001 0.006 0.003 0.001 0.004
∆V OLt 0.070 0.006 0.635 0.068 0.004 0.222

Regime 2 covariance (×102)
∆LTDt 2.915 -0.011 0.221
∆HV It -0.011 0.001 0.009
∆V OLt 0.221 0.009 2.268

Note: Full sample model estimates. Lag selection is based on SIC. Markov switching model allows for state dependent constants, autoregressive 

terms, adjustment speed to equilibrium, and heteroskedasticity. Table 4 reports the diagnostics and regime dynamics.

We commence with an analysis of the VECM, where the 
speed of adjustment α1 measures how the variables xt adjust 
to deviations from the long-run equilibrium. Our model 
estimates imply a long-run LTD growth rate of 0.673 per cent 
every month. Generalised impulse response functions (GIRF) 
with 95 per cent confidence intervals are plotted in Figure 3.

Figure 3: VECM(3) GIRFs
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A shock to LTD causes a brief positive impact on LTD 
revenues, which quickly decays to zero. In contrast, shocks 
to HVI and VOL show much more persistent effects, with 
price and volume shocks increasing LTD revenues by around 
6 per cent and 4 per cent, respectively, lasting for over 
24 months. This suggests that price shocks have a more 
substantial impact on LTD than volume shocks, aligning with 
the progressive tax structure. LTD shocks have no significant 
effect on property prices and transaction volumes. A shock to 
HVI also has a positive short-term effect on VOL, potentially 
indicating a strong market that encourages speculative 
activity, and thus increased volume. Similarly, a shock 
to VOL leads to a significant and lasting increase in HVI, 
suggesting volume shocks may signal rising demand that 
pushes prices higher.

Model diagnostics in Table 4 demonstrate the MS-VECM’s 
substantially lower AIC, which provides evidence in favour 
of regime switching.11 The MS-VECM identifies a persistent, 
low‑volatility state with steady state LTD growth of 
1.078 per cent every month (state one) and a less persistent, 
high-volatility state with slower LTD growth of 0.451 per cent 
every month (state two). The volatility of LTD and VOL in 
regime two is higher than regime one by over 4 and 10 times 
respectively. The MS-VECM estimate of α1 aligns closely with 
the VECM estimate. However, α2 suggests a faster return to 
equilibrium in the contractionary state.

Table 4: Model diagnostics

VECM(3) MS-VECM(1)

SIC -5417.86 -5602.24

AIC -5564.98 -5724.98

LL 2818.49 2892.49

ADF -21.1457** -23.7975**

∆LTD1 0.673% 1.078%

∆LTD2 0.451%

p11 0.9183

p22 0.7429

Note: Model lag and threshold variable selection chosen by SIC. 

Markov switching model allows for state dependent constants, 

autoregressive terms, adjustment speed to equilibrium, and 

heteroskedasticity. The ADF tests are run on model residuals. 

Indicators * and ** represent the rejection of the null hypothesis at 

the 5 per cent and 1 per cent levels, respectively. ∆LTDk represents the 

long‑run LTD growth rate of the model in state k.

11	 Note the Markov switching model selects one autoregressive lag, compared to the linear VECM’s three lags. This is likely due to the SIC penalising the additional 
parameters in the state dependent models.

The transition matrix suggests that state one – the expansion 
state – is more persistent than state two. The MS-VECM is 
expected to enter a contractionary phase every 12.24 months, 
with each contraction lasting 3.89 months on average. 
The ergodic (steady state) probabilities, which represent 
the expected long-run frequency of being in each regime, 
are calculated as: πP = π, π = [π1, π2] = [0.759, 0.241]. Thus, 
the housing market is expected to be in the first state 
75.9 per cent of the time.

The smoothed and filtered probability plot for regime one 
over the last 20 years of the sample is shown in Figure 4. 
Switches into the low-growth high-volatility state (state 2) are 
evident during the Australian recession in the early 1990s, the 
global financial crisis in 2008, and the COVID-19 pandemic 
in 2020. It is worth noting that during COVID-19, the model 
remains in state 2 for an unprecedented 9-month period, 
nearly three times longer than expected from the transition 
matrix.

Figure 4: State 1 probabilities
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Finally, Figures 5a and 5b display the 24-step-ahead GIRFs 
and 95 per cent confidence bands for the two MS-VECM 
states. In regime one, price and volume shocks have 
persistent impacts on LTD revenues, similar to the VECM. 
Prices respond positively to volume shocks, indicating 
a strong market during expansionary periods, which 
encourages speculation and increases volume. The short-run 
dynamics shift in regime two, where LTD reacts more quickly 
to volume and price shocks, though with similar magnitude. 
Notably, an LTD shock causes a significant price decline and 
volume increase, suggesting there may be greater sensitivity 
of the housing market to policy changes during contractions.
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Figure 5: MS-VECM(1) GIRFs
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(b) State 2: low growth, high volatility
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In summary, the MS-VECM provides a plausible 
characterisation of the dynamics, identifying switches 
between a high-LTD-growth low-volatility state and a low 
LTD-growth high-volatility state. The next three sections will 
examine whether allowing for regime switches improves LTD 
forecasts.

4.2	 Cross-validation
Our primary goal is to produce accurate and reliable 
forecasts of LTD. To evaluate forecast performance of 
the MS-VECM model, we perform a comprehensive ‘horse 
race’ between the following models: VECM, VAR (in levels), 
dVAR (VAR in first differences), dAR (univariate AR in first 
differences), MS-VECM, MSAI-VECM, MS-VAR (in levels), 
MS‑dVAR (first differences), and MS-dAR (univariate).
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All models require lag length selection and, as discussed 
above, traditional criteria such as SIC may not yield 
optimal forecasts over longer horizons. To address this, the 
cross‑validation (CV) approach in Section 3.3 is implemented. 
We use a 25-year estimation window, a 6-year training 
period (July 2011 to June 2017) and the last 6-year period 
(July 2017 to June 2023) for out-of-sample (OOS) forecasting. 
Experimentation revealed that a 25-year estimation window 
is essential for the MS models to identify regime switches. 
We are therefore limited to small sample sizes for the CV 
and OOS periods, which may affect our ability to statistically 
detect differences between models.12 Our CV analysis 
optimises lag length by considering lags of 1 to 10 for the 
linear models and 1 to 4 for the MS models (as the additional 
regime increases each models’ dimensionality).

12	 MS models without sufficient data suffer from two main issues: (i) the EM algorithm required for MLE parameter estimation is sensitive to initial values and may 
converge to local maxima rather than the global maximum, resulting in incorrect parameter estimates; (ii) the MS models may fail to detect structural breaks, 
causing the EM algorithm to fail to converge to well-behaved estimates. Window sizes smaller than 25 years commonly encountered these issues.

13	 While the CV(12) process selects the VECM(8) as the optimal model over the training sample, the VECM(4) achieves superior out-of-sample performance. Forecast 
tables with results for the VECM(8) are available upon request.

The optimal model specifications selected via CV are outlined 
in Table 5. Cross-validation typically favours fewer lags for 
models in levels, while selecting more lags for those in first 
differences, as demonstrated by the linear VAR and dVAR 
results. This pattern contrasts with AIC/SIC, which tends to 
select the same number of lags across model types and 
restricts lag length to a maximum of four. The benchmark 
model used for performance comparison is the VECM(4), 
commonly adopted by the Department of Treasury and 
Finance (DTF) due to its consistent out-of-sample accuracy.13

Table 5: Cross validation results

STATE DEPENDENT:

SPECIFICATION LAGS ν α Γk Σ

Selected models

VECM 4

VAR 2

dVAR 9

dAR 12

MS-VECM 3 Yes Yes Yes Yes

MSAI-VECM 4 Yes Yes No Yes

MS-VAR 2 Yes Yes Yes Yes

MS-dVAR 4 Yes Yes Yes Yes

MS-dAR 6 Yes Yes Yes Yes

Model combinations

AVG-3 (10%)

AVG-12 (10%)

AVG-3 (25%)

AVG-12 (25%)

MS-Combo

Note: Forecasting models specification determined by cross‑validation approach, choosing the number of lags which minimise a model’s 

12-month ahead cumulative MAPE over the training sample (7/2011-6/2017). Linear and MS models consider up to 12 and 6 lags, respectively. 

AVG-n (10 per cent) and AVG-n (25 per cent) models refer to model averages for the n-horizon  and , respectively, determined during 

the training sample (7/2011-6/2017). MS-Combo is the average of the best performing regime switching models during the training sample 

(7/2011‑6/2017) determined by the MCS. See Appendix A for a list of models in each combination.
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Our CV exercise also considers model combination forecasts. 
The AVG-n (10 per cent) and AVG-n (25 per cent) models are 
simple average forecast combinations, including models 
from the 10 per cent and 25 per cent MCS for the respective 
n-month horizon. Additionally, the MS-Combo model 
represents a simple average of the best performing regime 
switching models identified by the MCS during the training 
sample. Independent of the confidence level or forecast 
horizon, the same three models are consistently selected 
(MS‑VECM, MSAI-VECM and MS-VAR). Further details are 
provided in Appendix A.

4.3	Forecast performance
Table 6 provides the cumulative MAPE and MSE for the 
selected models and model combinations determined 
via cross validation. The best model for each horizon is 
underlined. Forecast performance varies significantly, with 
12-month MAPEs ranging from 18.72 per cent for the least 
accurate model (MS-dVAR) to 10.25 per cent for the best 
performing model (MS-VECM).

Table 6: Forecast evaluation (7/2017-6/2023)

MAPE (%) MSE (×10−16)

HORIZON 3 6 9 12 3 6 9 12

VECM 7.34* 8.12* 10.15** 11.53* 29.45* 134.12** 456.09** 1 092.85**

VAR 7.36** 8.43** 9.92** 11.24** 31.45** 147.31** 433.31** 987.09**

dVAR 7.47* 8.43** 11.52 13.79 31.43 153.48* 571.5* 1 423.0*

dAR 10.9 12.71 15.15 16.52 54.94 299.48 996.84 22 99.15*

MS-VECM 7.11** 7.88** 9.16** 10.25** 27.61** 124.83** 393.96** 937.0**

MSAI-VECM 6.77** 7.33** 9.74** 11.3** 25.23** 113.26** 410.56** 1 021.85**

MS-VAR 7.4** 8.64** 10.32** 12.05 31.95** 158.69** 480.92** 1 092.69*

MS-dVAR 12.29 14.8 16.93 18.72 72.51 432.77 1 382.07 3 251.48*

MS-dAR 10.69 12.55 14.98 16.45 52.62 282.27 981.93* 23 67.28*

AVG-3 (10%) 6.93** 7.88** 9.72** 11.03** 27.7** 129.16* 425.06** 10 07.78**

AVG-12 (10%) 7.37** 8.23** 10.18** 12.09** 28.45** 134.63** 456.78** 11 25.94**

AVG-3 (25%) 6.9** 7.85** 9.59** 10.83** 27.55** 128.03** 411.49** 969.1**

AVG-12 (25%) 6.96** 7.91** 9.52** 10.81** 27.59** 128.92** 407.33** 954.67**

MS-COMBO(12) 6.88** 7.76** 9.47** 10.74** 26.9** 125.45** 406.73** 963.59**

Note: The lowest loss for each horizon and loss function is underlined. **, * represent the model’s inclusion in the MCS at 25 per cent  and 

10 per cent levels respectively. 

Note that  ⊆ . AVG-n (10 per cent) and AVG-n (25 per cent) models refer to model averages for the n-horizon  and  

determined during the training sample (7/2011-6/2017), respectively. MS-Combo is a simple average of the best performing Markov switching 

models. See Appendix A for a list of models in each combination. MSAI-VECM has state invariant autoregressive terms; all other parameters are 

state dependent.

The VECM(4), which serves as DTF’s benchmark model, 
performs well out-of-sample, surpassing 6 of the 13 
competing models at the critical 12-month horizon under 
the MAPE criterion. The linear VECM is included in the 
10 per cent MCS  across all horizons and in the 
25 per cent MCS  at the 9-month horizon under the 
MAPE loss, highlighting its robustness. Among the Markov 
switching models, the MS-VECM and MSAI-VECM achieve 
the lowest forecast errors across all horizons by both MAPE 
and MSE measures. Specifically, the MS-VECM outperforms 
the benchmark VECM by over 11 per cent, with statistically 
significant improvements in the 3, 6, and 12-month forecasts, 
as shown by its inclusion in  using MAPE loss.

The MSAI-VECM and MS-VAR also outperform the VECM for 
the 3 and 6-month horizons, reflecting strong out‑of‑sample 
accuracy. The MS-dVAR and MS-dAR models forecast 
poorly, especially for shorter horizons. Despite MS-VECM and 
MSAI‑VECM models achieving the lowest MSE, the inclusion of 
most models in the MCS at the 25 per cent level is likely due to 
the low power of the MSE loss function.

Finally, all model combinations are in  under both 
loss functions, with none outperforming the MS-VECM or 
MSAI‑VECM.
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In summary, the Markov switching VECM models outperform 
a range of benchmarks including the linear VECM, across 
multiple horizons. A model combination consisting of Markov 
switching models also performs equally well.

4.4	COVID-19 analysis
We now assess performance of regime-switching models 
during the pandemic (March 2020 to August 2021). First, we 
examine whether the MS models identify a structural break 
in real time. We then examine their out-of-sample forecast 
performance. Figure 6 plots filtered probabilities for the 
MS‑VECM, MSAI-VECM and MS-VAR models.

Figure 6: MS model filtered regime 1 probabilities during COVID-19
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(c) MS-VAR(2)
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The probabilities reflect the model’s current assessment of 
which regime the system is in, conditional on the information 
at each point in time. To illustrate, the probability in 
March 2020, is the probability of being in state 1 from the 
model estimated using 25 years of data ending March 2020. 
The probability for April 2020, is based on the data set ending 
April 2020 etc. These probabilities therefore reflect a real-
time assessment as the models roll through the estimation 
windows. The noisy probabilities throughout the sample 
suggest it’s prudent to use a range of MS models when 
evaluating a regime switch in real time. Nonetheless, all model 
probabilities drop to zero in early 2020, indicating a switch 
to the low-growth high-volatility regime. This aligns with the 
smoothed probabilities from the full sample analysis shown 
in Figure 4.

Table 7 reports forecast errors for each model (selected via 
CV in section 4.2) from March 2020 to August 2021. The results 
are mixed with no model or combination clearly dominant 
across all horizons and loss functions. The MS-dVAR and 
MS-dAR models achieve the lowest 12-month forecast 
errors, with MAPEs of 13.31 per cent and 14.83 per cent, 
respectively, representing improvements of 23.68 per cent 
and 14.97 per cent over the linear VECM. The VECM though 
remains in  across all horizons under both loss criteria, 
indicating that no model statistically outperforms the 
benchmark. Importantly, the MS-VECM has a lower MAPE and 
MSE than the VECM across all horizons, and it remains in the 
MCS at the 25 per cent level for horizons 6, 9 and 12.

Table 7: COVID-19 Forecast Evaluation (3/2020-8/2021)

MAPE (%) MSE (×10−16)

HORIZON 3 6 9 12 3 6 9 12

VECM 9.08* 12.51** 16.85** 17.44** 28.29** 204.62** 801.52** 1 449.29**

VAR 8.58 11.56** 16.26** 18.64 28.33 200.19** 795.85** 1 589.17

dVAR 9.66 13.06 18.55 20.57 34.92 250.15 978.48 1 852.44

dAR 14.40 17.88 17.29* 15.14** 70.89 426.61 966.70* 1 376.60**

MS-VECM 8.31 11.32** 15.18** 15.46** 28.74 201.59** 773.57** 1 131.01**

MSAI-VECM 8.06** 11.84** 16.83* 17.76 25.65** 191.87** 786.51** 1 460.60*

MS-VAR 8.70** 11.89** 15.75** 17.69 27.36** 194.79** 773.17** 1 448.16

MS-dVAR 14.16 16.05** 16.78** 13.31** 73.92 438.71* 1 153.97** 1 128.83**

MS-dAR 14.32 18.03 17.35* 14.83** 69.38 433.27 971.48 1 313.87**

AVG-3 (10%) 7.90* 11.35 16.47* 17.75 26.49* 199.05 795.01* 1 438.71

AVG-12 (10%) 9.63 12.58** 14.51** 15.19** 33.22* 235.15** 757.39** 1 147.59**

AVG-3 (25%) 7.69** 11.09** 16.14* 17.40 25.32** 190.10** 766.34** 1 379.00

AVG-12 (25%) 7.85** 11.19** 15.95** 17.38 25.61** 190.34** 766.00** 1 377.28

MS-COMBO 7.72** 11.12** 15.9** 16.97 25.58** 190.65** 763.78** 1 319.80

Note: The lowest loss for each horizon and loss function is underlined. **, * represent the model’s inclusion in the MCS at 25 per cent  and 

10 per cent levels respectively. 

Note that  ⊆ . AVG-n (10 per cent) and AVG-n (25 per cent) models refer to model averages for the n-horizon  and  determined 

during the training sample (7/2011-6/2017), respectively. MS-Combo is a simple average of the best performing Markov switching models. 

See Appendix A for a list of models in each combination. MSAI-VECM has state invariant autoregressive terms; all other parameters are state 

dependent.
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The AVG-12 (10 per cent) and AVG-3 (25 per cent) are the 
best performing model combinations, achieving the smallest 
forecast errors at the 3, 6, and 9-month horizons. These 
findings highlight the effectiveness of model combinations 
during periods of economic turbulence. Simpler models in 
first differences, such as the MS-dVAR, MS-dAR and dAR, also 
perform relatively well, despite generally poor performance 
in the overall out-of-sample period (see section 4.3). This 
may be due to a range of factors including i) their simplicity, 
which may reduce the risk of over-fitting in highly volatile 
conditions; and ii) model selection over the training period 
(7/2011–6/2017) being sub-optimal when applied to the volatile 
COVID-19 period. 14

In summary, in real time the MS-VECM model successfully 
identified the regime switch at the beginning of the crisis. 
Noisy probabilities however suggest that a range of MS 
models should be used when trying to assess the presence 
of a switch in real time. MS-VECM forecasts provide better 
forecasts than the linear VECM model, however the 
differences are not statistically significant and may be a 
result of the small sample size.

5.	 Limitations and 
future research

While the MS-VECM models demonstrate improved prediction 
accuracy over linear benchmarks, these models have several 
practical limitations. First, the regime-switching framework 
introduces many additional parameters, particularly in 
the full MS-VECM. This increases the risk of overfitting and 
means that the model is generally unsuitable for small to 
modest sample sizes. Although the MSAI-VECM partially 
addresses this by restricting short-run dynamics, further 
research could explore dimension reduction techniques or 
Bayesian shrinkage to improve stability (Koop and Korobilis, 
2009). Second, the analysis focuses on a relatively short 
out‑of‑sample forecast horizon of up to 12 months. Future 
work could evaluate model performance over longer horizons 
or under different forecast combinations and weighting 
schemes. Additionally, the forecasting exercise could be 
expanded to other non-linear models such factor‑augmented 
VARs (Stock and Watson, 2002). Third, to identify regime 
switches, we required a long time span (25 years), which 
limited our ability to rigorously test out-of-sample 
performance. To reduce noise in regime probabilities, future 
research could also consider mixing student t (as opposed to 
Gaussian) distributions (Klaassen, 2002). Lastly, the MS-VECM 
assumes a state-invariant cointegrating vector. Long-run 
relationships between LTD, prices and volumes may vary 
across regimes, so regime-dependent cointegration may 
improve model fit and forecast precision (Rankin, 2005).

14	 This latter issue could be overcome with a longer cross validation period, however we do not have enough observations to do so. Another possibility is the 
breakdown of long-term cointegrating relationships during the crisis. The assumption of a state-invariant cointegrating vector in our MS-VECM models may be 
false requiring state-dependent cointegration. This is left for further research.

6.	 Conclusion
This paper has proposed the use of a Markov switching 
VECM (MS-VECM) when forecasting Land Transfer Duty (LTD) 
in Victoria. Our proposed model generally outperformed 
DTFs benchmark model, the linear VECM. The MS-VECM has 
plausible dynamics, identifying two states: a high‑LTD-growth 
low-volatility state and a low-LTD-growth high‑volatility state. 
The MS-VECM provides more accurate LTD forecasts over 
3, 6, 9 and 12-month horizons. At the beginning of COVID-19, 
the model was also able to identify a regime switch (to the 
low-LTD-growth high-volatility state) in real time. When 
seeking to identify regime switches in real time though, we 
suggest estimating a range of MS specifications, as regime 
probabilities from this model class are notoriously noisy.
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Appendix A
The AVG-n (10 per cent) models are simple forecast 
combinations that include models within the 10 per cent MCS 

 for the given n-month horizon, selected using training 
sample data from July 2011 to June 2017. Similarly, the AVG-n 
(25 per cent) models consist of models within the 25 per cent 
MCS  for the corresponding horizon, selected from the 
same training sample. The MS-Combo is a straight forward 
combination of the top-performing Markov switching models 
identified by the MCS. Notably, the confidence level and 
horizon do not influence the MS-Combo as the selected 
models remain consistent across cases. The models included 
in each combination are as follows:

•	 AVG-3 (10 per cent): dVAR, VECM, VAR, MS-VAR, MS-VECM, 
MSAI-VECM

•	 AVG-12 (10 per cent): VECM, MS-dVAR, MS-dAR, dAR, VAR, 
MSAI-VECM, MS-VAR, MS-VECM

•	 AVG-3 (25 per cent): VECM, VAR, MS-VAR, MS-VECM, 
MSAI‑VECM

•	 AVG-12 (25 per cent): VAR, MSAI-VECM, MS-VAR, MS-VECM

•	 MS-Combo: MS-VECM, MSAI-VECM, MS-VAR

Section 4 presents the results for models chosen under CV(12), 
i.e. those that minimise the 12-month ahead MAPE over the 
training sample, as this is the primary forecast horizon of 
interest.

In contrast, the following tables display results for models 
selected under CV(3), where the selection criterion minimises 
the 3-month ahead MAPE over the training sample. Adjusting 
the forecast horizon for model selection can lead to 
different lag specifications, potentially affecting forecasting 
performance.

Table 8 summarises the lag specifications selected under 
CV(3) and compares them to the CV(12) models discussed 
in Section 4. Forecast evaluation results for the entire 
out‑of‑sample period and the COVID-19 crisis period, 
based on CV(3) models, are presented in Tables 9 and 10, 
respectively.

Table 8: Model summary

LAGS (p)

MODEL CV(12) CV(3)

VECM p=4* p=4*

VAR p=2 p=12

dVAR p=9 p=11

dAR p=12 p=4

MS-VECM p=3 p=2

MSAI-VECM p=4 p=4

MS-VAR p=2 p=4

MS-dVAR p=4 p=1

MS-dAR p=6 p=5

Note: CV(n) represents the model lag specifications which minimise 

the n-step ahead cumulative MAPE over the training sample 

(7/2011-6/2017). Linear and MS models consider up to 12 and 6 lags, 

respectively. *Benchmark VECM lag specification is fixed at p = 4 

(refer to footnote 13). Tables 6 and 7 report the CV(12) forecast results. 

Tables 9 and 10 report the CV(3) forecast results.
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Table 9: CV(3) Models: Forecast evaluation (7/2017-6/2023)

MAPE (%) MSE (×10−16)

HORIZON 3 6 9 12 3 6 9 12

VECM 7.34* 8.12 10.15* 11.53** 29.45* 134.12* 456.09** 1 092.85**

VAR 7.45** 8.35* 10.36* 12.16** 33.20* 144.48** 507.89** 1 263.89**

dVAR 7.53* 8.43 11.16 13.35 33.69* 154.02* 555.22* 1 357.17*

dAR 10.64 12.43 14.80 16.17* 52.68 291.77 975.11 2 277.82*

MS-VECM 6.97** 7.30** 8.68** 10.45** 25.48** 110.64** 357.37** 897.39**

MSAI-VECM 6.77** 7.33** 9.74* 11.30** 25.23** 113.26** 410.56** 1 021.85**

MS-VAR 7.31* 8.66 10.22 11.34** 31.28 151.34 479.99* 1 092.70**

MS-dVAR 11.41 14.13 16.94 20.12 72.48 431.81 1 474.82* 3 710.98*

MS-dAR 10.45 12.28 14.67 16.16* 48.93 275.14 946.06* 2 254.57*

AVG-3 (10%) 7.05** 7.94 9.89 11.41* 28.70 128.67 437.89* 1 056.34*

AVG-12 (10%) 7.22** 8.33** 10.54* 12.54** 29.07** 137.66** 479.85** 1 198.79**

AVG-3 (25%) 7.01** 7.92* 9.68* 11.09** 28.12 125.95* 423.19** 1 019.48**

AVG-12 (25%) 6.94** 7.87** 9.58* 11.00** 27.91 124.51* 416.79** 1 005.75**

MS-COMBO(3) 6.90** 7.71** 9.31* 10.67** 26.71** 120.39** 397.85** 955.36**

Note: The lowest loss for each horizon and loss function is underlined. **, * represent the model’s inclusion in the MCS at 25 per cent  and 

10 per cent levels respectively. 

Note that  ⊆ . AVG-n (10 per cent) and AVG-n (25 per cent) models refer to model averages for the n-horizon  and  determined 

during the training sample (7/2011-6/2017), respectively. MS-Combo is a simple average of the best performing Markov switching models. 

MSAI‑VECM has state invariant autoregressive terms; all other parameters are state dependent.
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Table 10: CV(3) Models: COVID-19 forecast evaluation (3/2020-8/2021)

MSE (%) MSE (×10−16)

HORIZON 3 6 9 12 3 6 9 12

VECM 9.08** 12.51** 16.85 17.44 28.29** 204.62* 801.52* 1 449.29

VAR 8.95** 11.43** 16.23* 17.20 28.75** 172.07** 720.48** 1 402.11*

dVAR 10.00 12.91** 18.08** 20.18 36.57 230.42** 893.18** 1 785.46

dAR 14.15 17.41 16.35** 13.43** 70.52* 415.28 882.49* 1 092.13**

MS-VECM 8.54** 11.47** 15.72** 16.60 29.66* 210.01** 774.71** 1 245.81**

MSAI-VECM 8.06** 11.84** 16.83 17.76 25.65** 191.87** 786.51 1 460.60

MS-VAR 8.40** 11.98** 15.59 16.84 30.21** 198.43** 710.62** 1 308.68

MS-dVAR 11.71** 12.49** 13.60** 12.89** 58.53** 294.13** 693.7** 840.92**

MS-dAR 14.21 17.46 16.70** 14.02** 68.66 416.94 901.20* 1 141.71**

AVG-3 (10%) 8.47 11.95 16.56 17.43 28.57 197.27 766.83 1 404.26

AVG-12 (10%) 9.46** 12.24** 14.22** 14.30** 32.99** 216.95** 673.72** 1 015.82**

AVG-3 (25%) 8.24** 11.78** 16.26 17.02 27.46** 192.19** 748.38** 1 345.89

AVG-12 (25%) 8.07** 11.59** 16.11 16.92 27.48** 189.90** 736.7** 1 322.87

MS-COMBO 7.98** 11.64** 16.06* 17.01 27.81** 196.93** 749.35** 1 322.18

Note: The lowest loss for each horizon and loss function is underlined. **, * represent the model’s inclusion in the MCS at 25 per cent  and 

10 per cent levels respectively. 

Note that  ⊆ . AVG-n (10 per cent) and AVG-n (25 per cent) models refer to model averages for the n-horizon  and  determined 

during the training sample (7/2011-6/2017), respectively. MS-Combo is a simple average of the best performing Markov switching models. 

MSAI‑VECM has state invariant autoregressive terms; all other parameters are state dependent.


